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Supplementary Note 1:  

The SR-PM consists of a multiple-order retarder (MOR) followed by a horizontally linear 
polarizer (HLP). The Mueller matrices of HLP and MOR are expressed as: 

     

( ) 0 0

( ) ( ) 0 01
(0 ) ,

0 0 2 02

0 0 0 2

P

q r q r

q r q r
M

qr

qr

  
   

   
 
  

                              (S1) 

2 2 ( ) ( ) ( )

( ) ( )

( ) 2 2 ( ) ( )

( ) ( ) ( )

1 0 0 0

0 cos 2 sin 2 cos [1 cos ]sin 2 cos2 sin 2 sin
( , ) ,

0 [1 cos ]sin 2 cos2 sin 2 cos 2 cos cos2 sin

0 sin 2 sin cos2 sin cos

k k k

k k
R k k k

k k k

M
       

 
       

    

 
    
  
 

 

   

(S2) 

where q and r are the maximum and minimum transmittance of the HLP,  
( ) ( ) ( ) ( )2 [ ] /k k k k

e od n n    , d is the thicknesses, ne and no are the extraordinary and ordinary 

refractive indices of the MOR, respectively. According to the Muller-Stokes calculus, the 
output Stokes vector ( )

out
kS  of the SR-PM is 
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We only need carry out the multiplication of the first row of the Mueller matrix with the input 
Stokes vector because the imaging spectrometer only measures the output intensity signal

( ) ( )
out,0

k kI S  . Thus, the measured intensity is 
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are the arguments of measurement matrix M(k). where q and r are the maximum and minimum 
transmittance that account for imperfection of the polarizer, ( ) ( ) ( ) ( )2 [ ] /k k k k

e od n n    , d is 

the thicknesses, ( )k  is k-th wavelength, ( )k
en and ( )k

on  are the extraordinary and ordinary 

refractive indices of the MOR, respectively.  

 

Supplementary Note 2:  
Legendre polynomials basis is expressed as: 

   

   

1 1 1

( )
,

1

,

x y x y

L

k
n L

N N L N N

P x P x

B

P x P x

 
 
 
 
 
 



  



                                  (S6) 

where L is the number of Legendre polynomials which is signal-dependent; x1, …,
x yN Nx  

uniformly sample the interval [-1,1]. Correspondingly, the Legendre polynomial Pm(x) is 
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Discrete cosine transform matrix with (nx, ny)th entry is expressed as: 
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We combine Legendre polynomials with discrete cosine transform bases into sparse matrices, 
and the total bases coefficients Nc is the summation of the Legendre polynomials coefficients 
L and the discrete cosine transform coefficients D = NxNy, 
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Supplementary Note 3: 

The modified Res-Unet is a neat end-to-end convolutional neural network (CNN) architecture 
for multiscale feature extraction from input images [56]. As shown in Fig. S1, it consists of two 
parts, a downsampling encoder that takes encoded spectropolarimetric images as input, and an 
upsampling decoder that outputs the decoded Stokes vector for each spectral band. In the 
encoder part there are five encoder blocks, and each block consists of two convolutional 
operations (3 × 3 convolutional + batch normalization + ReLU) followed by a 2 × 2 max pooling 
operation for downsampling. A residual block connects the two convolutions. After each 
encoder block, we double the number of feature channels. Other two similar convolutional 
operations in the valley connect the encoder part and the decoder part. Symmetrically, in the 
decoder part has five decoder blocks, and each block consists of a 2 × 2 up-convolution 
operation for upsampling followed by the two similar convolutional operations. After each 
decoder block the number of feature channels are halved. The feature channels in the encoder 
blocks are concatenated to the corresponding decoder blocks using skip connections in the 
middle. Finally, the last additional 1 × 1 convolutional layer followed a sigmoid activation 
function outputs the reconstructed result. 



 

Fig. S1. The Res-Unet framework.  

 

 

Supplementary Note 4: 

In this note, we present more detailed analyses about the influence of the spatial resolution and 
spectral resolution on the DIP-SP reconstruction. Figure S2 shows the reconstructed images of 
Stokes parameters (S0, S1, S2, S3) at the spectral band of 550 nm under different spatial and 
spectral resolutions, respectively, at the low-noise level (σ = 0.05). The method of TwIST-SP 
and DIP-SP perform slightly when reducing spectral resolution or spatial resolution, and the 
DIP-SP method still achieves high-quality reconstruction. When the spectral resolution is 
reduced from 400(Nx) × 400(Ny) × 100(Nλ) to 400(Nx) × 400(Ny) × 20(Nλ), for the intensity 
image S0, the PSNRs of TwIST-SP and DIP-SP decrease about 0.37dB and 0.06dB, and the 
SSIM reduces about 0.001 and 0.001, respectively. For all the polarization images (S1, S2, S3), 
the PSNRs decrease about 0.51dB and 0.02dB, and the SSIM reduces about 0.036 and 0.001, 
respectively. It shows that the decrease of spectral resolution has low effect on the DIP-SP. 
When the spatial resolution is reduced from 400(Nx) × 400(Ny) × 100(Nλ) to 100(Nx) × 100(Ny) 
× 100(Nλ), for the intensity image S0, the PSNRs of TwIST-SP and DIP-SP decrease about 
0.98dB and 0.74dB, and the SSIM reduces about 0.005 and 0.004, respectively. For all the 
polarization images (S1, S2, S3), the PSNRs decrease about 1.21dB and 0.73dB, and the SSIM 
reduces about 0.008 and 0.006, respectively. As seen, the DIP-SP is slightly sensitive to the 
spatial resolution relative to the spectral resolution. This mainly because neural networks are 
good at representing and generating images, the decrease in spatial resolution expectably affect 
the fit ability of untrained network. However, the performance of the DIP-SP is still the best 
and acceptable.  



 

Fig. S2. Simulated results for the reconstructed images of full Stokes parameters (S0, S1, S2, S3) 
at the spectral band of 550 nm from different algorithms: TwIST-SP and DIP-SP at the low noise 
level (σ = 0.05). For each Stokes parameter, the spatio-spectral resolution of the first row is 
400(Nx) × 400(Ny) × 100(Nλ), the second row is 400(Nx) × 400(Ny) × 20(Nλ), and the third row is 
100(Nx) × 100(Ny) × 100(Nλ). Average PSNR and SSIM relative to the Ground truth over all 
spectral bands are presented just below each image. 

 
 
Figure S3 shows the reconstructed average spectral curves of all polarization parameters 

over a homogeneous area of 5 × 5 pixels when the spatio-spectral resolution is 400(Nx) × 400(Ny) 
× 20(Nλ), and their average absolute errors and RMSEs relative to the ground truth (GT) are 
listed in Tab. S1. Relative to the result in Fig. 4 with the spatio-spectral resolution is 400(Nx) × 
400(Ny) × 100(Nλ), the performances of the TwIST-SP and DIP-SP methods degrade with the 
decrease of spectral resolution, although the DIP-SP still performs the best. For the DIP-SP 
method, the average absolute errors of the reconstructed Stokes parameters by the DIP-SP 
increase from 3×10-4 to 4×10-4 at the low-noise level (σ = 0.05) and from 6×10-4 to 9×10-4 at 
the high-noise level (σ = 0.2). This is mainly due to the increase of the spectral interval among 
adjacent bands. As a result, the initial values from the former band will not be adaptable to the 
next band, making it susceptible to noise perturbation. 



 

Fig. S3. Simulated results (TwIST-SP: blue dashed line, DIP-SP: red dotted line, Ground truth: 
black solid line) for the average spectropolarimetric curves and error curves over a homogeneous 
area of 5 × 5 pixels at the two noise levels. The spatio-spectral resolution of datacube is 400(Nx) 
× 400(Ny) × 20(Nλ). The Stokes parameters (S0, S1/S0, S2/S0, S3/S0) are listed in left column and 
the derived AOP, DOLP, DOCP, DOP are displayed in right column, respectively. 

 

Table S1. The average absolute errors and RMSEs of spectropolarimetric curves (TwIST-SP and DIP-SP) 
relative to the Ground truth. 

 σ 
Average absolute error RMSE 

S0           S1          S2            S3    AOP DOLP  DOCP  DOP S0           S1          S2            S3       AOP  DOLP  DOCP  DOP 

TwIST-SP 0.05 0.035 0.080 0.063 0.025 2.1    0.08   0.02    0.08 0.060 0.134 0.131 0.049 3.2    0.14    0.05   0.14 

 0.20 0.083 0.119 0.128 0.060 5.5    0.16   0.04    0.16 0.118 0.254 0.246 0.091 7.5    0.25    0.09   0.26 

DIP-SP 0.05 0.004 0.005 0.005 0.003 0.3  0.009  0.003   0.01 0.008 0.015 0.015 0.006 0.8  0.013   0.006  0.02 

 0.20 0.009 0.009 0.009 0.006 0.6  0.015  0.005   0.02 0.020 0.029 0.029 0.011 1.3  0.029   0.010  0.03 

 

 

 



Supplementary Note 5: 

To demonstrate the necessity of our MINI-ORRISp as well as DIP-SP method over previous 
methods with rotatable polarizers, the application on real time acquisition of dynamic scenes is 
presented in this note. Herein, we use the MINI-ORRISp with the integration time of 200 ms 
to record a low-light lab dynamic scene at cloudy afternoon. Since the data volume is large, 
just the DIP-SP is used for reconstruction with the iterations of 8600 for the first frame 
according to the auto-stopping criteria. Figure S4 shows a frame of dynamic scene including a 
man moving through the lab hallway. The CIE color fusion image S0 from all bands and the 
gray images (S1/S0, S2/S0, S3/S0) at the four selected bands of 480nm, 550nm, 600nm and 700nm 
are presented, as well as the spectropolarimetric curves from the cellphone screen and the sun 
glasses, respectively. The derived images AOP, DOLP and DOCP are also provided. It is 
clearly to found that although the sun glasses have dark image S0 and spectrum S0, their 
polarization information is high, as a result the sun glasses on the images (S1/S0, S2/S0) become 
obvious. Similar phenomena also appeared on the watch panel on left forearm. In contrast, the 
cellphone screen not only has high polarization information (even on the image S3/S0) but also 
has bright spectrum which complies with the ground truth from the fiber spectrometer. The 
cellphone screen and sun glasses have uniform AOP and DOLP, which show definitely contrast 
relative to the spectral images S0. The average DOLPs of the glasses and screen are close to 
0.25 and 0.48 respectively. The images S3/S0 and DOCP are weak in all spectral bands, but they 
still can reveal the cell phone screen from the background. As seen, our system as well as 
algorithm have the capability of capturing the objects located at low-light level. 

 

Fig. S4. Lab dynamic scene results with the integration time of 200 ms at the four spectral bands 
of 480 nm, 550 nm, 600 nm and 700 nm (see Visualization 1). The first through forth column 
are the images of (S0, S1/S0, S2/S0, S3/S0), respectively. The fifth through seventh column are the 
images of AOP, DOLP, and DOCP, respectively. The bottom left is the CIE color fusion image 
S0, where the cell phone screen is marked with red cross and the sun glasses with yellow cross; 
the bottom right is the spectropolarimetric curves of two marked areas. 


